skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hao, Siyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many bird species commonly aggregate in flocks for reasons ranging from predator defense to navigation. Available evidence suggests that certain types of flocks—the V and echelon formations of large birds—may provide a benefit that reduces the aerodynamic cost of flight, whereas cluster flocks typical of smaller birds may increase flight costs. However, metabolic flight costs have not been directly measured in any of these group flight contexts [Zhang and Lauder,J. Exp. Biol.226, jeb245617 (2023)]. Here, we measured the energetic benefits of flight in small groups of two or three birds and the requirements for realizing those benefits, using metabolic energy expenditure and flight position measurements from European Starlings flying in a wind tunnel. The starlings continuously varied their relative position during flights but adopted a V formation motif on average, with a modal spanwise and streamwise spacing of [0.81, 0.91] wingspans. As measured via CO2production, flight costs for follower birds were significantly reduced compared to their individual solo flight benchmarks. However, followers with more positional variability with respect to leaders did less well, even increasing their costs above solo flight. Thus, we directly demonstrate energetic costs and benefits for group flight followers in an experimental context amenable to further investigation of the underlying aerodynamics, wake interactions, and bird characteristics that produce these metabolic effects. 
    more » « less
  2. Abstract Flexible sensors with accurate detection of environmental stimuli (e.g., humidity and chemical substances) have drawn increasing research interests in biomedical engineering and environmental science. However, most work is focused on isotropic sensing of liquid occurrence due to the limitation of material development, sensor design, and fabrication capability. 3D printing is used to build multifunctional flexible liquid sensors with multimaterials enabling anisotropic detection of microliquid droplets, and described herein. Electrical conductive composite hydrogels capable of detecting chemical liquid are developed with poly (ethylene diacrylate) (PEGDA) and multiwalled carbon nanotube (MWCNT). Due to the absorption of the liquid droplet and related swelling behavior, the resistance of PEGDA/MWCNT composite hydrogel increases dramatically, while the resistance of pure PEGDA hydrogel decreases significantly. Based on the two composite hydrogels and the related 3D printing method, a mesh‐shaped liquid sensor that can effectively identify the position and volume of liquid leakage in a short time is developed. Furthermore, a three‐layered liquid sensor to enable bidirectional monitor and detection of the liquid leakage in two different sides is demonstrated. The 3D‐printed liquid sensor offers a distinctive perspective on the potential applications in various fields for detection of liquid leakage in accurate position and direction. 
    more » « less